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1 Background

The response of a bound electron to an external monochromatic field is a
complicated process, that gives rise to a variety of phenomena. This problem
has proven much richer than could be suspected at the origins of quantum
mechanics. This is hardly surprising, because at the root of its richness lies
the full complicacy of classical nonlinear dynamics, that only in recent times
we have begun to explore.

In 1974 Bayfield and Koch found that the ionization of highly excited hy-
drogen atoms by microwave fields has a threshold character with respect to
field strength: it is very small at very small intensity but it increases abruptly
at a certain threshold intensity. This -was found to be an essentially classical
phenomenon, the observed threshold being practically the same as the clas-
sical threshold above which the classical dynamics of the electron becomes
chaotic. ’Chaotic’ ionization was extensively investigated in the 80’s, both
experimentally and theoretically. The important result was thus established,
that classical chaotic effects have a counterpart in quantum mechanics, as-
soclated with phenomena in the atomic domain that lie beyond the grasp of
conveiﬁional purely quantal theoretical methods.

Thig very idea lies at the core of the research summarized in this report,
which was aimed at a classical analysis of the ’intense field stabilization’ (IFS)
effect. This effect is expected to appear on increasing the field strength still
further(1].

When a beam of hydrogen atoms passes through a linearly polarized
radiation field of given frequency and intensity, a fraction of the total number
of atoms will be ionized as a consequence of the perturbation produced by
the field on the motion of the atomic electrons. This fraction, which defines
the probability of ionization , will be more or less large, depending on the
actual values of the frequency e , of the intensity ¢ , and of the time of
interaction. According to common intuition, if the radiation frequency and
the interaction time are fixed, , stronger fields should expected produce a
stronger ionization - in other words, the ionization probability should be a
monotonic function of the field intensity at fixed frequency.

A number of theoretical studies suggest that this may not be the case.




According to these studies, the ionization probability will at first increase
with the field intensity as expected, but when the intensity becomes large
enough it will start to decrease, i.e. the atom will become increasingly stable
against field-induced ionization. This surprising effect is called stabilization.
It was first predicted on purely quantum grounds by Pont and Gavrila in
1990, and has since become a topic of lively interest. It is not yet clear
whether the effect can be dectected in laboratory experiments, because the
existing theories do not yield precise estimates for the range of parameter
values where the effect should be observable. The analysis by Gavrila&Pont
has been followed by numerical simulations of the quantum dynamics by Su,
Eberly and Javanainen 1991 and by Kulander, Schafer and Krause 1991.
These studies have exposed stabilization for small initial quantum numbers
1 +6 at field intensity ~ la.u. and frequency on the order of the binding
energy of the atom. Such conditions would make stabilization even more
puzzling, binding it to occur in a situation in which absorption of even one
single photon leads to ionization; moreover, they would place the observation
of the effect beyond the reach of current laser technology.

More recent studies have indicated that stabilization would occur also
at significantly lower frequencies, provided that the initial state of the atom
has a nonzero magnetic quantum number along the direction of the field.
It has been remarked by Gavrila et al. 1992 that the frequency may be
greatly reduced if one allows for high initial magnetic quantum number, to
the extent that the effect should be observable in laboratory experiments at
current laser performances.

2 Theoretical Approach

2.1 Qualitative Description

Our own approach to the stabilization problem is based on the idea that IFS
is basically a classical phenomenon and that some of its quantitative features
can be caught by an analysis based on classical mechanics. In the light of the
above reviewed findings about chaotic ionization, we maintain that classical
nonlinear effects do have a relevance in the photoionization problem and that
classical estimates can be quite effective. As a matter of fact, Grobe et al




1991, Grochmalicki et al 1991, Bowden et al 1991 have investigated classical
versions of a simplified model by Su et al.. (a one-dimensional model with
a ’smoothed’ Coulomb potential) and have concluded that most features of
stabilization already occur in a classical context.

We use a simple Keplerian model, in which the electron moves under
the combined effect of the Coulomb field and of the radiation field. The
Hamiltonian of this model is
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H =Z))~ ——%—I—zesiu(wt) (1)
where 7 is distance from the nucleus and the coordinate z is measured along
the direction of the (linearly polarized) external field. In eqn.(1) atomic units
were used, in which varions constants have a unit value; ¢ and w are the field
ntensity and frequency. The Hamiltonian (1) describes a highly nonlinear
dynamics . Since the direction of the external force field is fixed in time, there
is one conserved quantity, namely the projection m of the electron angular
momentum I along the field direction; this we call the magnetic number.

Our analysis starts with a simple qualitative argument. If the electron
were subjected only to the external field then its motion could be simply
described as an rectilinear uniform motion at constant velocity v with a
superjiposed oscillation of amplitude ¢/w?. The work done by the field in
one field period would then he
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2TwT
W = —e/ vsin(wt)dt =0 (2)
0

On the other hand, the Coulomb force would enforce a change in time
of the drift velocity v. Although eqn (2) would be still approximately valid
when the electron is far from the nucleus, near the nucleus the change of v
during one period would be large, leading to a significant energy transfer.
In this way we see that the external field is most effective in perturbing
the electron dynamics when the electron is close to the nucleus, so that
the main contribution to ionization comes from close encounters with the
nucleus. Now suppose that prior to the switching on of the field the electron
was moving along a Keplerian ellipse with given angular momentum ! and
magnetic number m. Roughly speaking, the field will superimpose on this
motion an oscillation of width ew™ along the field direction. The global
effect of this oscillation will be qualitatively different according to whether
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m =0 0r m # 0. In the former case the direction of the field lies in the plane
of the orbit, and the field induced oscillation along that direction will bring
sooner or later the electron close to the nucleus; during each such encounter
it will absorb much energy from the field and will be consequently ionized
in a relatively short time. Instead, if m # 0, the large field oscillation will
carry the electron away from the plane of the orbit and will therefore keep
it a long time far from the nucleus, where its average energy won’t change
very much. In essence, this is the mechanism of classical stabilization.

This rough intuitive picture, which decouples the motion in an orbital
part plus a field oscillation, clearly rests on the assumption that the change
of the orbital "drift’ velocity during one period due to the Coulomb force is
small. This condition is the better satisfied, the larger the field frequency.
In a sense, stabilization occurs when the Coulomb force acts as an adiabatic
perturbation of the free field motion. This adiabaticity is violated either at
small frequencies or at small values of m, that allow for frequent encounters
with the nucleus. In this way we have obtained a qualitative understanding
of the role of the parameters m and w. Let us now briefly sketch some more
details.

A more precise analysis starts with a well-known coordinate transfor-
mation ( Kramers-Henneberger transformation). Instead of studying the
dynampics in the fixed ’laboratory’ reference frame we move to a moving
referefice frame which oscillates along the direction of the field with the fre-
quency <of the field itself.. In this new frame the nucleus is not at rest but
15 itself oscillating with the frequency w, and the electron is only subject
to the potential of this moving charge. If the amplitude and frequency of
the oscillations are large enough, then a convenient approximation for the
moving-charge potential is obtained by time-averaging.

By using the time-averaged potential in place of the exact, time-dependent
one we get an effective time-independent Hamiltonian . The averaged Hamil-
tonian is conveniently written in cylindrical coordinates p, 2, ¢ with the z
axis along the direction of the field, and is that of an electron moving in the
field of a charge distributed along a ‘thread’of length ¢/w? ( with a certain
time-independent density). This field has still a singularity at p = 0,which
1s however of logarithmic type, hence of a much milder sort than the origi-
nal Coulomb singularity. On the other hand the centrifugal term (3d term
in eqno(2)) has a much stronger singularity and thus it prevents the elec-
tron from coming appreciably close to the thread, as long as the averaged
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Hamaltonian can be assumed to be a constant.

In other words, the combination of the potential of the thread and of the
centrifugal potential produces a potential well inside which the electron can
be trapped. In our theory of ref.([2]) this very trapping is responsible for sta-
bilization. A quantitative condition for that is gotten from the requirement
of adiabatic invariance of the averaged Hamiltonian . The condition reads

w
€ > €spqh = a;; (3)
where « is a numerical constant.

The existence of the stabilization effect in the classical model (1) and the
dependence of the stabilization threshold on frequency and magnetic number
predicted by (3) have been confirmed by numerical simulations of the classical
dynamics.

2.2 Statement of Problems.

To summarize the previous discussion:

the stabilization od hydrogen atoms in strong monochromatic fields is
strongly suggested by quantum numerical simulations and by quantum the-
oretical arguments that do not however provide precise estimates for the
experiinental conditions under which the effect should be observed. On the
other hand there is sound numerical evidence that the effect is already present
in classical mechanics; moreover, we have a rough quantitative predictions
for the classical effect. Remarkably, this estimate predicts stabilization of
Rydberg atoms (n ~ 70) at reasonable field intensities ¢ ~ 2 x 103V/em with
frequencies in the microwave region.

Nevertheless, this (largely heuristic) classical analysis is still wanting, and
its indication about the actual observability of IFS calls for a more refined
investigation, that may account for important aspects . In particular, a very
important , as yet poorly understood, problem is

- what is the role of chaos in the classical ionization process ¢ classical
wonization at low field is well known to be due to the onset of chaos. What is
the nature of the motion in the stabilized regime?



Classical analysis, both numerical and theoretical, is technically difficult
. In addition, it is encumbered by several accessory features whose relevance
to the IFS is not clear. For example, the effective Hamiltonian hinted to
above is fairly complicated itself and exhibits a remarkable feature named
"dichotomy’: in the reference frame oscillating with the external field, the
nucleus itself oscillates and produces an average Coulomb field quite similar
to the field due to a charge continuously distributed along its trajectory.
Since the nucleus spends a large part of its time in the vicinity of the turning
points of its trajectory, this charge distribution is highly non homogeneous
and looks like a sort of dumb-bell. At low field the combination of ”dumb-
bell” and centrifugal potentials produces an effective potential well which has
a single minimum; however, as the field increases the potential well is more
and more strained and above a certain field intensity it splits into a double-
well potential which has two minima located close to the extrema of the
dumb-bell. This metamorphosis of the average potential experienced by the
electron in the moving frame has been often considered as a key ingredient
of IFS, both in the quantum [5] and in the classical description(3].

In order to get rid of accessory features and to make numerical analysis
easier we have used a simpler model that nevertheless retains all the essen-
tial ingredients of IFS. In this model the external perturbing field is not
monoghromatic but consists of a train of §-like pulses, or kicks, of alternate
sign. This kicked model offers the following advantages:

- it I very convenient for numerical simulation; an exhaustive map of the
dependence of the ionization probability on the various parameters can be
obtained;

- it still exhibits IFS;

-it does not exhibit dichotomy, so that the latter turns out to be inessential

- from the viewpoint of the above sketched quantitative theory of ours it
is expected to behave exactly as the realistic monochromatic model.

2.3 The Kicked Hydrogen Atom

The technical tool we have used is a modified model in which a classical
3 dimensional hydrogen atom is subjected to a periodic sequence of é—like
pulses of fixed strength and direction and alternating sign. The advantage of
this model is that its numerical simulation is very economic as compared to




that of the more realistic, monochromatically driven atom. Its Hamiltonian
reads

2 9. +o0
o P I 2ez N nT

where 7 = (z,y,z) , T = 27/w, and atomic units were used. The dipole
approximation is used, and the field is polarized in the z—direction.

The evolution defined by (4) over one period T' = 2% is given by a product
of four maps. The first of these describes a free Keplerian motion over a time
% ; the second, a "kick” which discontinuously changes p, into p, + %‘; next
comes one more free Kepler motion , followed by one more kick changing p, by
~f}—"~ . Iteration of this four-factor map yields a stroboscopic evolution defined
by (4) which can be computed with considerably less numerical effort than
that required for the simulation of (1) over a comparable number of periods.

A "Kramers-Henneberger transformation” can be performed to a refer-
ence frame which oscillates in the z-direction according to a sawtooth. The
moving nucleus produces an uniform average charge distribution. The combi-
nation of the corresponding average potential and of the centrifugal potential
yields the effective potential, that, unlike the case of a monochromatic driv-
ing, has always a single minimum.

THé dependence of the ionization probability on the field parameters ¢
and w As illustrated by the "phase diagram” of Fig.1, which displays the
survival . probability after a fixed physical time for different values of ¢ and
w. It was constructed in the following way[CGM]. First we have chosen 60
evenly spaced points on the horizontal axis and 80 evenly spaced points on the
vertical axis. Having thus discretized the region shown in Fig.1 by means of
4800 points, for each of these we have numerically computed 100 orbits having
initial action variables n = 1,1 = 0.3,m = 0.25 and randomly distributed
angle variables. Due to well-known scaling properties, cases with initial n # 1
can be reduced to cases n = 1 by using scaled variables wn?, en, [/n,m/n.

The survival probability was determined as the fraction of orbits that re-
mained within a distance » = 500 from the nucleus after a time corresponding
to approximately 500 kepler periods at n = 1. Kicks were smoothly switched
on, 1.e. ¢ was linearly increased from zero to its nominal value during a finite
number of kicks ( 10 kicks for the case of Fig.1). The main qualitative feature
of Fig.1 is represented by two wedge-shaped regions of high survival proba-




bility. These regions are separated by a "death valley” that becomes deeper
when moving to higher frequencies. The lower stable region is located at
small ¢ and corresponds to a regime of dynamically stable motion; the upper
region is the one corresponding to IFS.

2.4 Results

A first basic question is about the dependence of the stabilization probabil-
ity on the interaction time. During a longer interaction time, some of the
surviving orbits contributing in the grey regions of fig.1 would be ionized,
so that the figure would overall turn to paler tones of grey. What changes
would occur in the geography of fig.1 if the figure were reproduced with a
longer interaction time? In particular, does the functional form of the sta-
bilization threshold depend on time? This is of course a crucial question for
the practical usefulness of our theoretical estimates.

To answer this question, we have chosen three points in the (e,w) plane
of Fig.1, respectively located (a) deep in the lower stable region, (b) still in
that region, but not far from its upper border, (¢) in the IFS region. For
each of these we have computed the survival probability P, as a function of
the interaction time, over an interval from 100 to 35000 pulses. Results are
showy in fig.(2). They indicate that the upper border of the lower region is
not stable in time and must be expected to move downwards on increasing
the interaction time; instead, the IFS region appears to be essentially stable
on a very-long time scale.

Next one would like to understand the dynamical origin of the various
stability regions.

An obvious reference problem for understanding the nature of the lower
stable region is the low-field stability of monochromatically driven atoms,
which has been extensively studied. The excitation process is known to be
determined by a typical KAM scenario, with distorted KAM tori gradually
disappearing on increasing e. In the KAM region, the only possible ionization
mechanism is Arnol’d diffusion of unstable orbits between surviving tori; this
is a very slow process, that would produce a substantial stability over not
too long time scales. We ignore whether KAM tori survive at low field in our
case, too.

In any case, the border of the lower stable region is determined by a
chaotic ionization mechanism very similar to the one widely discussed for
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the case of monochromatic driving. Far from the nucleus the electron is
moving on an almost perfect Keplerian ellipse in spite of the periodic kicks.
In fact subsequent kicks have opposite sign and compensate each other al-
most exactly, except when the electron comes close to the nucleus: there
its velocity changes significantly between subsequent kicks and the external
field is therefore most effective. From close encounters with the nucleus the
electron emerges on a different almost unperturbed ellipse and the process
is repeated a number of times, until a particularly energetic encounter with
the nucleus sets the electron on an escape route. In the chaotic regime, the
sequence of jumps can be pictured as a random walk (in energy) eventu-
ally leading to ionization. The corresponding diffusion coefficient, however,
decreases on increasing the external frequency, asnd this explains why, at
fixed interaction time, the survival probability is found to be an increasing
function of w.

To get a more refined test, we have numerically computed Maximal Lya-
punov Exponents (MLE) at various values of the field and for a fixed fre-
quency, (fig.3). This was done by numerically computing the rate of expo-
nential separation of orbits initially close to each other, not in real time but
in a fictitious time proportional to the number of passages at the aphelion.
This was necessary because excitation, hence ionization, only occurs close to
the aphelion. The higher the electron is excited in the principal action n, the
longeriit stays away from the nucleus, moving on an almost perfect unper-
turbed ellipse. Thus, even in the case when the sequence of passages at the
aphelion’affects the motion of the electron in a chaotic way, the appearance
of longer and longer quasi-regular strings in the motion of the electron far
from the aphelion would force Lyapunov exponents in real time to vanish.

In fig.3 we show the MLE as a function of the field intensity at fixed fre-
quency. The MLE is significantly different from zero even below the stability
border resulting from Fig.1, which implies that this border is not stable in
time, because a large fraction of the surviving orbits are in fact chaotic and
would 1onize in a longer time. The actual stability border, where the MLE
falls to the level of numerical errors, is significantly lower.

We have computed MLE’s in the IFS region, too, for stabilized (non-
lonizing) trajectories. Such orbits have the typical appearance shown in
Figs.4,5. In particular, Fig.5 shows that stabilized orbits look like the tra-
jectories of an electron moving in the average KH potential. Numerically
computed MLE for such orbits fall within the range of numerical noise, im-
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plying that the stabilized motion is either stable or very weakly chaotic. In
both cases, the observed stabilization should be practically constant over a
rather long scale of interaction times.

The upper border of the IFS region in Fig.1 clearly follows a w? law. This
can be understood on the following grounds. The potential well in the p
direction is located around p ~ me'/?/w and is therefore shifted to higher
and higher values of p as the field is increased; it will eventually move so far,
that no.orbit in the initial ensemble will have a chance to be trapped in it,
because the initial ensemble of orbits has a finite extent in p, that does not
depend on ¢ and w. The critical field for this effect will clearly scale as w?.

3 An aside on the autoionization of Molecules.

In our investigation of Atoms in Strong Fields we have developed a number of
theoretical tools which allow for an efficient analysis of the classical dynamics
of an atom in an external electromagnetic field. These methods yield a par-
ticularly efficient technique for the analysis of the stability of the motion, and
for the determination of the quantitative conditions under which ionization
is to be expected, due to the onset of chaos in the electron dynamics.

Although our main interest is in the Intense Field Stabilization effect, we
have fOA.llld that the mentioned methods are applicable to a wider class of
problems. In particular, we were able to obtain significant results concern-
ing the phenomenon of Auto-Ionization of molecular electrons - a physically
important effect where classical chaos plays a determinant role.

In this Section we summarize our work on this problem, which has led us
to some unexpected predictions.

3.1 Background

The study of the dynamics of electrons in molecules is conventionally based
on the Born-Oppenheimer approximation, which rests on the time scale of
the electronic motion being much shorter than that of the motion of the
molecular core. This separation of time scales allows for a decoupling of
the electronic from the core degrees of freedom. If. however, one of the
electrons is excited into a Rydberg state, then its orbital frequency may
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become comparable to those of the core motion, and this approximation
is no more valid: the coupling between the core motion and the electron
motion becomes substantial, and may also lead to ionization. This process
is called auto-ionization, and is nowadays drawing attention, because recent
progress in experimental technique has made it possible to prepare electrons
in molecular Rydberg states.

Previous studies [13, 14, 15] have assumed that autoionization occurs only
if the outer electron comes very close to the core; a condition for this should
be that the angular momentum electron | < 4. We have instead identified
a general mechanism of energy exchange between the molecular core and
the Rydberg electron, which can be effective arbitrary large values of orbital
momentum. This kind of interaction can lead to chaotic auto-ionization of
the Rydberg electron, and can be understood by constructing a simple area—
preserving map which gives the change of electron energy after one orbital
period.

3.2 Theory.

Since we are interested in the case of large orbital momentum, the minimal
distance ry;, = [2/2 between the electron and the core is always much larger
than the size of the core «. We will describe the core as consisting of a pos-
itive Coulomb charge plus a rotating dipole. For simplicity we will consider
the case in which the electron orbit and the rotating dipole lie in the same
plane, so that the magnetic moment m = [ (the case of a more general orien-
tation of these planes qualitatively gives the same results). In this case the
Hamiltonian, in atomic units, can be written in the form:

| . L* 1 rcosd+ ysing
H=3 (02 +92) + 57~ +d = (5)

where d, L, I are respectively the dipole moment, the orbital momentum
and the moment of inertia of the core. The angle ¢ conjugate to L gives the
angle between the a—axis and the dipole direction. With the substitution
x =rcose, y=rsine in Hamiltonian (5), it is easily seen that L +m = J
is an integral of the motion; this corresponds to the conservation of the total
momentum J of the molecule.
~ According to the Hamiltonian (5), the phase & rotates with frequency
¢ = w = L/I. If the energy of rotation of the core is larger than the

13




change of electron energy after one orbital period, then the rotation frequency
w 1s approximately constant, and system (5) can be reduced to the time-
dependent Hamiltonian:

xcoswt + ysin wt

1,. . 1
H=§<])i+]);)—;—l—(l (6)

)3
Moreover, since the dipole moment of the core is much less than the minimal
distance ri, between the electron and the core, the Hamiltonian (6) can be
further approximated as:

= % (pf -+ pfl) - !

H
((:zt + deos wt)® 4 (y + dsin wt)z)l

NG

If now a Kramers-Henneberger transformation [16] is performed, to a refer-
ence frame moving along a circle of radius d with angular frequency w, then
the motion becomes the same as for an Hydrogen atom in a circularly po-
larized monochromatic electric field, with amplitude ¢ = dw?. This problem
was studied in detail [17, 18] where it was shown that the dynamics of the
electron is described by the so called Kepler map, which gives the change of
the electron energy after one orbital period:

- N =N +ksind _

_ - N3/ 8

. b =@+ om0 (~20N)™ ®)

where N = E/w is the electron energy £ = —1/(2n?) divided by the fre-

quency of the dipole rotation (n is the principal quantum number). The bar
indicates the new values of variables after one iteration of the map. The
change of electron energy given by the first equation in (8) is defined by the
rotating phase ® = wt of the dipole at the moment when the electron passes
near the perihelion. The second equation describes the change of the rotating
phase of the dipole after one orbital period. The expression for

o 4 I :
k= 2.6do'? <l + e + 1-09W1/31> ()

which gives the kick strength, was obtained in [17] and is correct in the

) : . 0/ N1/3
regime where wy = wnj > 1 and when the orbital momentum [ < (3/w) / (a
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different polarization orientation gives approximately the same k—value [17]).
Therefore the map (8) can be used only under the condition d < a < 1y, &
P/2 <1/w*. A disadvantage of eq.(9) is that the kick strength k& depends
on [. However, according to [17], the change of { is small after one orbital
period. It is also possible to show that the overall change of I during the
whole ionization process is small; in fact, it is equal to the change of N (in
quantum language, to the number of absorbed photons; which is quite clear,
because in a circularly polarized field, the momentum of photons is equal
to one, and therefore the change of the orbital momentum of the electron is
equal to the number of absorbed photons). Therefore, the maximal change
of [ can be estimated as Al = ng/(2wo); in turn, if we > 1, this leads to but
a small change in k.

3.3 Results.

In order to check the validity of the map (8) we have numerically integrated
the classical equations of motion for the original Hamiltonian (6) and we have
plotted the change AN = N — N over one orbital period as a function of
the dipole phase at perihelion. Fig.6 shows that the numerical results agree
quite well with the theoretical curve ksin @, with the numerical value of k in
agreement with expression (9); for [ we have used the initial value, because its
change was relatively small. A typical structure of the phase space is shown in
fig.7a which is obtained from numerical integration of Hamiltonian (6). The
comparison with the phase plot (fig.7b) obtained from the Kepler map (8)
further demonstrates that the map gives a good description of the dynamics.

The main conclusion which can be drawn from our analysis is that the
change of the energy after one orbital period, kw, is practically independent
from the minimal distance ry,;, & I2/2 between the electron and the core.

As it was shown in [17] the map (8) can be reduced to the celebrated
standard map and, accordingly, a transition to chaotic diffusive excitation
occurs when the parameter &' = 6rkw?n becomes larger than 1. This is
our quantitative estimate for the onset of chaotic autoionization. Indeed, in
this case the phases ® in (8) become random and the orbit diffuses in N-
space with diffusion coefficient D = k2?/2. This process of chaotic diffusion
excitation eventually leads to ionization. The ionization time measured in
the number of orbital periods is approximately tp = N;?/D where N; =
1/ (2n0*w) is the number of photons required for ionization.




In the quantum case the situation is more complicated, and two additional
borders play a relevant role. First, in order to get a significant quantum
excitation, it is necessary that the so—called Shuryak stability border [20] k =
I be exceeded. This essentially means that the perturbation must be larger
than the unperturbed level spacing; this is a purely quantum condition, not
related to the nature of the classical motion. If both conditions K > 1,k > 1
are fulfilled, then quantum excitation takes place. However, as it is now well—
known, it may be significantly smaller than classically expected, because of
quantum interference effects (localization); in that case a quantum steady
state 1s attained, which is exponentially localized in the number of photons
N around the initial state, with the localization length ¢, ~ D = k2/2 [17].
This implies that ionization occurs if the localization length £4 is larger than
the number of photons N; necessary to reach continuum. The condition
Ly = 1/ (2ndw) leads to the so—called quantum delocalization border d >

1/ (w‘r’/Gn,(,\/(—')').

The Shuryak condition & > 1 implies d > 1/ (5w5/ 3), and can be much
more restrictive than the classical chaos border. For example for n, =
40, wo = 4 we have d > 5, much above the classical chaos border.

A qualitatively similar picture holds for the case when the dipole moment
of the molecule is zero; in that case, one has to take into account a rotating
quadrpole molecular moment.

In‘conclusion, the above sketched classical analysis allows for a descrip-
tion of the ener gy exchange between the rotating molecular core and Rydberg

electrons. It leads to an estimate for the critical value of the interaction,

above which this exchange becomes chaotic, leading to diffusive auto ion-
1zation of Rydberg electrons. Quantwm effects can lead to suppression of
this diffusive ionization, creating long living quasi-stationary states in the
continuum spectrum of molecules. The investigation of this phenomenon in
laboratory experiments will allow a better understanding of the phenomena
of quantum chaos in molecular systems.

4 Conclusions and recommendations.
The analysis of the IF'S model based on the model of the periodically kicked

hydrogen atom has provided a fairly complete picture, which appears to be
generalizable to the monochromatically driven case.. We have found that :
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(1) Our estimate (3) for IFS is fully confirmed; therefore, the phenomenon
takes place in a parameter range which should be accessible to present-day
technology; the more so, in that

(2) this estimate is not crucially dependent on the interaction time. Con-
cerning the dynamical origin of IFS:

(3) the stabilized motion turned out to be only weakly chaotic. Stabi-
lization is therefore due to a significant reduction of the chaotic excitation
mechanism , which, at lower field intensities, is responsible for ionization.

We have also found that the methods we have used for our theoreti-
cal analysis - a combination of the map formalism and of the Kramers-
Henneberger transformation - are applicable to a wider variety of ionization
problems - for example, to the chaotic autoionization of molecules.

Other important questions concerning the IFS effect were not addressed
in the reported research, but appear quite accessible to our numerical and
theoretical methods and, in our opinion, deserve serious attention. Among
these we quote:

how robust is the IFS phenomenon against noise? A stochastic time-
dependent perturbation added on the basic external driving will presumably
reduce the stabilized regime. A quantitative assessment of the effect of noise
would be important in the design of experiments aimed at detecting IFS.

§

5 Eigure Captions.

L. Survival probability after a time ~ 1000 a.u., with microcanonically
distributed initial conditions at n = 1,1 = 0.3,m = 0.25, as a function of
intensity ¢ and frequency w, for 60 evenly spaced values on the horizontal
axis and 80 values on the vertical axis. Darker tones of grey correspond to
higher survival probability. The line has equation ¢ = 5.w/m and defines the
Stabilization Threshold.

2. Hlustrating the dependence of the ionization probability Ps on the in-
teraction time, at fixed frequency w = 7.9 , for three different field intensities:

(a) € = 0.2;(b) e = 3.17; (c) ¢ = 500.




3. Maximal Lyapunov Exponent A vs. y at @ = 1, z and y being the
variables given on the horizontal and on the vertical axis, respectively, in

Fig.1.

4. A typical stabilized orbit at n = 1,m = 0.25, initial value of | =
0.3, with ¢ = 158,w = (.28, projected onto the plane (z,y) of the initial
unperturbed orbit.

5. Projection of a stabilized phase-space trajectory onto the (p, p,) plane,
for the same data as in Fig..4. Dotted lines correspond to motion in the
average potential.

6. Comparison of the numerically computed values AN = N — N (dots)
obtained by solving the system (6) for dn;? = 0.000625,wn? = 4,1/n, =
0.3,n0/n, = 1.25 and the theoretical curve ksin® (full curve), with the
value of k taken from (9). The value n; fixes the classical scale.

7. a) The phase plane (En?, ¢) for the system (6) with dn;? = 0.000625,
wn? =4, l/n, = 0.3. b) The phase plane obtained from the Kepler map (8)
with 1‘313e same parameters of case a).
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